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Abstract 
Adverse climate conditions can affect digital photography and cause issues such as colour 

shifting, poor visibility, contrast reduction, and fainted appearance due to the scattering of 
atmospheric Particulate Matter (APM). Estimating an optimum transmission matrix is the 
key to success for any single image dehazing technique. The use of VDSR 20-weighted Layers 
ImageNet classifier within l earning based Super Resolution technique x allows improving 
any image resolution and leads to noise suppression. High Residual Learning gradient clip-
ping ensures fast convergence of the algorithm followed by denoising and artifacts removal as 
a result of compression. This key introspection has been exercised in improving resolution of 
the hazy images with an optical image formation model. In addition, we evaluate the bench-
mark of established images and make results comparisons to the state-of-the-art methods 
that shows a consistent improvement in accurate scene transmission estimation resulting in 
clear, natural haze-free radiance. A plausible consistency between execution speed and pro-
cessing speed has been achieved. 

Keywords: VDSR, Dehazing, APM, optical image formation model, SIVDSR, SIVDSR-
Dhaze, MOSF, VIA. 

 

1. Introduction 
Atmospheric particulate matter (APM) that is inclusively known as aerosols, is the main 

cause of scattering, absorption, reflection, and refraction of light in the medium. Photographs 
of a natural scene under high environmental pollution are known to reduce radiance due to 
attenuated direct scene transmission and cumulative additive scattered surrounding light fa-
miliar as airlight or veiling light [6-12, 18, 20, 30]. The Airlight dominates the distant object 
scene radiance due to attenuation of direct transmission and diminishes to zero. Ultimately, 
low contrast and a whitish veil cover the image entirely. To address the problem, single image 
prior based visibility improvement algorithms are used that dominate in the dehazing re-
search domain. These techniques hinge on a physical-based image formation model combin-
ing convexly with the direct scene transmission and airlight. The majority of image dehazing 
methods recover scene radiance by replacing the layer of haze and rely on a physical image 
formation model [1, 2, 10, 11] for this. In section 3, this mechanism has been described elabo-
rately with the coefficients of the linear combination that represents  the scene transmission 
(visibility) at each image pixel. A pixel in an RGB image represents the four unknown param-
eters- a) the scene radiance at each R, G, B colour channel and b) the transmission value. 
Whereas, the input captured image supplies only three constraints, the intensity of each R, G, 
B channel. To rectify this indeterminacy, most of the renowned methods rely on additional 
information about the scene- a) multiple images photographed in dissimilar weather condi-
tions [36], b) polarization angles [35], and c) knowledge of the scene geometry [39]. In recent 
times, methods have been developed to replace an additional input requirements. This has 
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been earned by penalizing the physical model with such properties as maximal contrast [38], 
or by complimentary assumptions on hazy atmosphere. In Fattal [20], the indeterminacy in 
the computation of transmission has been relaxed by eliminating scattering light. A solution 
has been formulated to resolve the ambiguity locally with no correlation between the trans-
mission and surface shading functions in slow varying regions. He et al. [18] efficiently stated 
that there is a lowest intensity patch of pixels among the pixels in the dark (low-intensity) 
colour channel, known as Dark Channel Prior (DCP). Such pixels are found across the entire 
image. Transmission estimation is known to be inaccurate in images with a bright wide re-
gion-like sky. VDSR is a well-known highly accurate SISR architecture inspired by VGG-net 
used for ImageNet classification with 20 weight layers. Long threaded cascading small filters 
form a deep network structure, and correlated information in wide image regions is extracted 
efficiently. This framework is faster than SISR and the learning convergence rate is also high 
at training due to adjustable gradient clipping [4]. The area is of great interest and authors 
have been carrying out research in this field with prior works [6-9, 30].  

The dehazing problem is predominantly ill-posed. By designing an efficient regular-
ized filter, dehazing problems can be resolved with the refinement of the coarse estimated air-
light. Over-saturation, halo artifacts, and gradient reversal artifacts problems 
have been found in most existing dehazing techniques. Explicitly, the proposed technique re-
fines the TM via super resolution [4] based DM estimation. The technique implements resid-
ual learning with significantly high learning rates to optimize a very deep network fast. Con-
vergence speed is high with gradient clipping to ensure training stability. The effectiveness of 
the algorithm is tested in terms of subjective and objective comparison with the state-of-the-
art techniques [17- 22, 29] on three benchmark datasets. This comparison study shows suffi-
cient improvements in DM, TM and following high quality outputs. 

The major contributions of the proposed method are: We propose a novel sin-
gle image VIA (SIVIA) to minimize the effect of poor visibility. The procedure is executed in 3 
steps. First, low complexity SRVDSR based depth map estimation followed by TM estimation 
has been proposed. The atmospheric scattering image formation model is employed to get the 
original scene radiance. Finally, a super-resolution output image is obtained from the invert-
ing image formation optical model. Experimental results are assessed and compared to the 
state-of-the-art VIAs using peak signal to noise ratio (PSNR), structural similarity index 
(SSIM), Naturalness Image Quality Evaluator (NIQE), Blind/ Referenceless Image Quality 
Evaluator (BRISQUE), and CIEDE2000 showing improved performance. DMs are compared 
and analyzed. The paper is organized as follows: a literature survey presented in section 2, the 
proposed technique described in section 3, results arranged in section 4, and section 5 con-
taining the discussion.  

Spotlight: 
● A novel single image VIA (SIVIA) is proposed to minimize the effect of poor visibility 

by inverting the atmospheric scattering image formation model with super resolution.  
● Low complexity SRVDSR based depth map estimation followed by TM estimation, 

comparison and analysis, which results in noise reduction.  
● The lower bound of transmission has been examined in detail.  
● Experimental results are assessed and compared to seven state-of-the-art VIAs using 

the peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), Naturalness Image 
Quality Evaluator (NIQE), Blind/ Referenceless Image Quality Evaluator (BRISQUE), and 
CIEDE2000 show improved performance.  

● SIVDSR-Dhaze, SIVDSR-DhazeRE outputs obtained. 

2. Literature Survey 
Light waves encounter numerous microscopic particles as they traverse the transmission 

medium to reach the image sensors. Atmospheric scattering occurs which results in higher 
luminance. However, the reflected light waves are themselves also attenuated and scattered 



along the path to the image sensors. Such, multiplicative loss causes a decrease in image con-
trast [10]. Visible light is primarily attenuated in the atmosphere by the scattering phenome-
non and the process model is controlled with an extinction coefficient k. Fog is solely respon-
sible for this phenomenon and creates a luminous veil on the way of direct transmission hin-
dering visibility [14]. In 1924, Koschmieder [13] developed a simple relationship between the 
apparent luminance L of an object at a distance d and its intrinsic luminance L0 and Lf as far 
end object luminance. 

𝐿 = 𝐿0𝑒−𝑘𝑑 +  𝐿𝑓 (1 − 𝑒−𝑘𝑑)  (1) 

2.1 Atmospheric Physics Model 
In 1975, McCartney proposed the optic based image formation model which is frequently 

used in image processing applications. The detailed description was presented by Narasim-
han in 2000 [35, 36] which modelled atmospheric scattering taking into account the resulting 
attenuation. Many renowned methods have been developed from this model such as the mul-
tiple images fusion method, partial differential equation algorithm, Tan method, Fattal meth-
od, Markov Random Field with Bayesian algorithm, He method, and so on. The image for-
mation optical model as shown in figure 1, d stands for the distance between objects of inter-
est and the observer, β (λ ) represents the atmospheric scattering coefficient, and λ denotes 
the wavelength of the light [11, 26, 36]. 

 

 
Figure 1. Optical Image Formation Model [28] 

 

2.2 Dehazing Evaluating Techniques 
In [2], atmospheric effects are removed from terrain images taken by a forward-looking 

airborne camera assuming the airlight to be constant over the entire image with known scene 
depth. Dark Channel Prior (DCP) [18] produces good results with a patch-wise assumption of 
minimum intensity channel in RGB image. However, some images do not produce satisfacto-
ry results due to an underestimated transmittance over dehazing and colour distortion. DCP 
is a statistical observation for TM estimation accurately. DCP is based on the dark object [1] 
and the key observation is mostly formed by the local regions (except the sky or hazy regions) 
that contain pixels with low intensity in at least one of the colour channels. To reduce arti-
facts, the transmission estimate is further refined based on the alpha matting strategy. Meng 
further explored the merits of the DCP [18]. The technique incorporates a boundary con-
straint which is a weighted L1 norm regularization on the transmission estimation produced 
by DCP. Thus, the overall drawback of DCP alleviates, and sharp edges and bright sky regions 
are addressed efficiently [19]. Fattal proposed a technique depending on the inspection of 
the distributions of pixels in a small patch of a natural image. These patches stand for one-
dimensional structures known as colour lines, in the RGB plane. A low complexity TM is es-
timated from the computed offset of colour lines to the origin. A refined transmission is 
formed by a Markov random field model removing the noise and other artifacts due to scat-



tering [20]. Berman et al. further investigated the colour consistency observation that ex-
amines the colour distribution in a haze-free image. This is well approximated by a discrete 
set of clusters in the RGB colour space. Furthermore, these pixels in a given cluster are non-
local and distributed over the entire image plane. Thus, these pixels are affected asymmetri-
cally by the haze forming cluster leading to haze line. The position of each pixel within the 
line estimates its transmission level. These haze lines highlight the inconsistency of transmis-
sion in different regions of the image. Finally, this is applied to estimate the TM [21]. Cai et 
al. recommend an end-to-end deep CNN model training with synthetic haze to haze-free 
patch mapping. The technique breaks down into four consecutive steps: features extraction, 
multi-scale mapping, local extrema, and finally non-linear regression [29]. Ren et al. pro-
posed a multi-scale CNN to estimate the TM directly from hazy images trained with synthetic 
hazy images generated from haze-free images. In turn, the DM is computed followed by ap-
plication in the light propagation model. The TM is first estimated with a coarse-scale net-
work followed by a fine-scale network [22]. Ancuti et al. present a novel straightforward 
method for local airlight estimation along with the advantage of the multi-scale fusion strate-
gy fusing the multiple versions obtained from distinct definitions of the locality notion. The 
algorithm is equally effective for the complex night-time dehazing challenge and day-time ha-
zy scene improvement with severe scattering or multiple sources of light [17].  

2.3 Super Resolution Techniques 
LR images can produce corresponding numerous HR images making SISR image a chal-

lenging intractable problem [23]. Earlier mapping of HR images from LR images was insuffi-
cient and inefficient. Recent deep learning (DL) based SISR methods are efficient subjectively 
and objectively. SRCNN was a benchmark for network architecture [24]. SRCNN consists of 
three-layer CNNs, each with the filter sizes of each layer 64×1×9×9, 32×64×5×5 and 
1×32×5×5. These three nonlinear transformations perform patch extraction, nonlinear map-
ping and reconstruction. The loss function for optimization is mean square error. 5-10 lay-
ers of feature learning are common for convolution neural networks (CNN). 50-
100 layers of CNNs form very Deep CNN. 

Very Deep Super Resolution (VDSR) improves resolution with a very deep learning tech-
nique [4]. With the increase in depth of DL architecture, it becomes difficult to train CNN. 
Recently, techniques have been developed to converge faster with better results [25]. Huang 
et al. [31,32] framework was used as a benchmark for comparison of the state-of-the-art re-
sults taking into account the same assessment process. Bicubic interpolation is adopted in the 
YCbCr colour model to take into account the human visual sensitivity to the intensity rather 
than colour information. Finally, the luminance component is enhanced and denoised with 
the VDSR network via the final regression layer of the activation network. CIEDE2000 colour 
distortion is an important parameter for distortion in colour of an image after processing [33, 
37]. 

3. SIVDSR-Dhaze: The Proposed Technique 
In this section we describe the proposed single image very deep super resolution 

SIVDSR [4] based dehazing technique. We consider the technique application from the pro-
spect of the image formation optical model [10]. The VDSR network has been employed for 
better denoising with super resolution module in the depth estimation stage. Finally, we em-
ploy contrast enhancement on the radiance image formed by inverting the image formation 
optical model. 

3.1 Image Formation Optical Model 

If N denotes the number of pixels in an RGB colour image I, then 3N possible numbers of 
equations can be possible. The image formation scattering model in figure 1 is represented as: 

𝐼𝐶(𝑥) = 𝐽𝑐(𝑥)𝑡(𝑥) + 𝐴𝑐(1 − 𝑡(𝑥)). (2) 



Here, 𝐼𝐶(𝑥) , 𝐽𝑐(𝑥), and 𝐴𝑐 are scalers with the colour components of the channel 𝑐 ∈
{𝑟, 𝑔, 𝑏}. 𝐽𝑐(𝑥) has 3N unknown radiance. Whereas, there are N unknown transmission t, and 
3 unknown atmospheric light 𝐴𝑐. Thus, there are 4N + 3 numbers of unknowns compared to 
3N number of equations as in figure 2. This leads to an ill-posed problem that arises due to 
the ambiguity in the spatially varying t, and hence generating N variables. Thus, at least one 
extra constraint is required for each pixel to solve the ambiguity [5, 30]. 

 

 
Figure 2. The colour vector I represents a linear combination of J and A in the RGB colour 

space [18]. 
 
Equation 2 can be rewritten as equation 3. 

𝐼(𝑥) = 𝐽(𝑥)𝑡(𝑥) + 𝐴(1 − 𝑡(𝑥). (3) 
I(x) represents an observed or received image captured by a camera or sensor. J(x) stands 

for hazefree image or original scene radiance. t(x) is the transmission map representing the 
part of the light that arrives the camera without scattering. A stands for the global atmospher-
ic light. J(x)t(x) describes direct decay of light or attenuation due to the scattering of the re-
flected light in the medium and is expressed as direct attenuation. A(1-t(x)) stands for the 
atmospheric optical shifted component and is named as airlight. This is the activity of the 
atmospheric light with its shift as a result of previously scattering of light, and as a result orig-
inal scene colour shifts. In equation 3, J(x)t(x) is a multiplicative effect on the scene radiance, 
whereas A(1-t(x)) is an additive effect. In nutshell, original scene radiance is influenced by 
multiplicative attenuation phenomena followed by additive airlight shifting which leads to 
colour fainting as well as shifting. Transmission of the medium represents homogeneous at-
mosphere as 

𝑡(𝑥) = 𝑒−𝛽𝑥 (4) 

According to Dark Channel Prior (DCP) [18], a natural clear RGB image has at least 
one minimum intensity patch in a channel out of three channels. This minimum intensity 
patch is almost zero value. This has been observed in over 5000 image datasets. 

Now in [18], t(x) is readdressed as 
𝐽𝐷𝑎𝑟𝑘(𝑥) =  (𝐽𝐶  (𝑦)) (5) 

The corresponding received image is as 

𝐼𝑚𝑖𝑛 (𝑥) =  
𝐽𝐷𝑎𝑟𝑘(𝑥)

𝐴𝑐
 

(6) 

𝐼𝑚𝑖𝑛 (𝑥) =  
(𝐽𝐶  (𝑦)) 

𝐴𝑐
 

(7) 

JC indicates scene radiance in a channel of RGB image. JDark represents dark channel of 
JC. In correspondence to JDark, observed minimum intensity channel is Imin. Again, consider-
ing aerial perspective, t(x) can be rewritten as 

𝑡(𝑥) = 1 − 𝜔𝐼𝑚𝑖𝑛(𝑥). (8) 
ω, the haziness factor adds a realistic appearance to the dehazed image. Thus, finally in-

verting the image formation optical model of equation 3, the output dehazed image is as 



𝐽(𝑥) =
𝐼(𝑥) − 𝐴

(𝑡(𝑥), 𝑡0) 
+ 𝐴. 

(9) 

where t0 is the lower bound of the transmission map t(x) and is set as 0.1[18]. From equa-
tion 9, when transmission t(x) reaches zero, J(x) becomes an ill-posed equation. To overcome 
the issue, t0 is introduced. In [18], A is estimated as 0.1% in the dark channel. In the proposed 
scheme, atmospheric light consists of 0.1% brightest pixels of each channel which is more re-
alistic and appropriate. Moreover, atmospheric light and DM are estimated in parallel, reduc-
ing computational time.  

3.1.1 Depth Map [DM] Conceptualization 

As discussed above, the DCP technique generates good quality dehazed images at the ex-
pense of computational cost. To overcome this, fast depth map estimation is found in the lit-
erature [6-9, 30]. The incorporated in dehazing the image formation optical model [10] is a 
fundamentally ill-posed inverse problem. Thus, DM estimation cannot be obtained in any one 
way or technique, rather infinite possibilities are there. Whithin this proposed dehazing ap-
proach, super resolution technique VDSR [4, Matlab2018a] has been implemented. DM is es-
timated in a minimum intensity channel denoised by VDSR. 

DM estimates the amount of low intensity in the RGB image. The main objective in DM is 
to find the amount of scene radiance removing noise that corrupts the image during captur-
ing or due to attenuation [6-9, 16-22]. The DM also provides the depth of distance in an im-
age. In the primary stage, DM is considered the minimum intensity channel out of three RGB 
channels. Still, it has some noise. To refine DM, super resolution based residual image tech-
nique [4] has been incorporated. 

3.1.2 Transmission map [TM] Conceptualization 

TM indicates the amount of light that reaches the camera without attenuation consider-
ing the atmosphere to be homogeneous. This transmission is achieved by inverting or com-
plimenting the DMs. Thus, it is better to consider the residue from a unitary image of the 
same size as the original image [ 18]. It is defined in equation 8. 

3.1.2.1 Importance of Lower Bound of Transmission Map (t0) 

Transmission is kept under control by a lower bound (t0) as haze prevails in dense haze 
regions. Transmission may fall at a value of zero making equation 8 an ill-posed inverse prob-
lem. To restrict this situation, the lower limit of TM is mandatory. In [18], the lower limit is 
considered 0.1 as discussed in section 3.1. The variable lower limit of TM has not yet been 
considered.  

3.1.3 Aerial perspective 
As mentioned in section 3.1, equations 8 and 9, the atmosphere on a clear day contains a 

certain amount of particles. These particles create haze at distant objects. Furthermore, the 
aerial perspective of human vision is the fundamental cue to estimate depth. Due to this ef-
fect, distant objects look faint [18]. ω is the parameter known as the haziness factor and most 
of the SIVMs incorporate it as a constant. But in [7-9], this is the ratio of minimum intensity 
to maximum intensity in a depth map. Thus, ω is an adaptable parameter depending on the 
captured atmosphere [6-9] as shown in equation 8. 

3.1.3.1 Adaptable Haziness Factor 

In [7-9, 30], the adaptive haziness factor was introduced to address the ever changing 
and inhomogeneous atmosphere producing effective results. It was already established that 
one of the channels of RGB image is darker than the other two channels, and one patch of 
that channel is darkest. With this assumption, the adaptable haziness factor is conceptualized 



as the ratio of minimum intensity pixel to maximum intensity pixel in the dark channel or 
DM channel. This assumption has also been incorporated into these proposed techniques. 

3.2 Architecture of the Proposed Model 
We have proposed a dehazing model in this paper which is novel from the view-

point/aspect of obtaining the improved restoration of weather corrupted images. This model 
can be divided into three parts: the atmospheric scattering model, followed by DM estimation 
in the VDSR network, and enhancement with residual images. 

3.2.1 Low complexity Atmospheric Scattering model [6-9, 30] 
A DM of low visibility images has been refined through a minimum order statistics filter 

of linear complexity O(n) followed by improved transmission estimation. An adaptable hazi-
ness factor has been proposed by a ratio of minimum intensity to the maximum intensity of 
the 3-D RGB image vector [7-9]. The extinction coefficient of atmosphere and visible distance 
(the distance that can be viewed in the image) before and after processing have been present-
ed for each image automatically. Moreover, a simple contrast metric has been applied as the 
difference between maximum intensity to minimum intensity of 3D RGB image vectors. By 
inverting the image formation optical model, a clean image is produced by application of the 
model in section one. The model is applicable for diverse types of low visibility images. The 
MOSF used for TM recovery is unique in this research work and has been efficiently applied 
in the algorithms as the transmission estimator which is the main motivation for the fast and 
good performance of the proposed methods. Dark channel prior is a patch-based technique 
that gives patch information, whereas MOSF gives artifact-free detailed pixel information at 
the expense of minimum cost. Depth map and atmospheric light estimation are very im-
portant in colour image dehazing. Selecting the correct atmospheric light value is a challeng-
ing problem. In our work, the new value is obtained by first estimating the top 0.1% of the 
brightest pixel in the minimum channel, which mostly is the haze opaque part of the image 
and the brightest portion of the image followed by the value of the bright channel. Then, the 
average of the two channels is collected. This method overcomes the deficiency of the dark 
channel prior and reduces the influence of white objects or sky areas on the whole image. 
Moreover, scene radiance dehazed image is improved with the VDSR network as shown in 
figure 3 as the block diagram of the proposed technique. A revised model of figure 3 is shown 
in figure 4. In figure 4, the depth map is refined with VDSR [4] which develops good quality 
TM following high quality radiance image. 

 

 
Figure 3. Block Diagram [40] 

 



 
Figure 4. Block diagram of the proposed SRVDSR-Dehaze model, A represents atmospheric 

light, DM as a depth map, TM as a transmission map 
 
Table I: SIVDSR Algorithms [40]. 

Algorithm: I (SIVDSR) 

1: Input hazy image 
2: Atmospheric light estimation, 
3: Depth map estimation  

3: Transmission map estimation 
4: Scene radiance recovery by Image formation Optical model 
5: Output Dehazed Image with VDSR  
 
Table II: SIVDSR-Dehaze: The Proposed Model I.  

Algorithm-II (Modification of algorithm I) 

1: Input hazy image 
2: Atmospheric light esti-

mation, 
Refined Depth map estimation through super resolution 
technique (three stages: raw depth map (minimum of 
three channels), 2D bicubic super resolution image, 2D 
residual image) VDSR network [4] 

3: Refined Transmission 
map estimation 

VDSR RGB Image 

4: Refined Scene radiance through Image formation Optical model 

 
In algorithm-II, step-II consists of two parallel module-atmospheric light estimation 

and depth map estimation. Due to parallel operation, step II saves time. This is an added ad-
vantage. Algorithm III is by product of algorithm II where the output of algorithm II is en-
hanced with VDSR RGB, refined RGB image reference with the hazy image as in equation 13. 
 
Table III: SIVDSR-DehazeRE Dehazing: The Proposed Model II. 

Algorithm-III (Modification of Algorithm II) 

1: Input hazy image 

2: Atmospheric light esti-
mation, 

Refined Depth map estimation through super resolution 
technique (three stages: raw depth map (minimum of three 
channels), 2D bicubic super resolution image, 2D residual 
image) VDSR network [4] 

3: Refined Transmission 
map estimation 

VDSR RGB Image 

4: Refined Scene radiance Image formation Optical model 

5: Output super resolution residual enhanced Dehazed Image 



3.2.2 VDSR Architecture [4] 

VDSR [4] is the first pioneering work with Single Image Super Resolution (SISR). As 
shown in figure. 6, VDSR is a 20-layer VGG-net with a 3x3 kernel. Initially, the learning rate 
is high for fast convergence. Gradient clipping is used to reduce gradient explosion artifacts. 
Apart from novel architecture, VDSR has established two more attributes, i) a single model 
for multiple scales as the SISR operates with different scale factors having a strong relation-
ship with each other. This concept inspires many classical SISR methods. As compared with 
Super-Resolution Convolutional Neural Network (SRCNN), bicubic interpolation on Low 
Resolution (LR) image acts as input to the VDSR network. In the training phase, LR bicubic 
input images of different scale factors are processed in VDSR. The mapping with a smaller 
scale factor (×2) may also be instrumental for a higher scale factor (x3 or x4), ii) the residual 
learning is the other unique attribute. Mapping from the bicubic version to High Resolution 
(HR) is not direct, rather VDSR employs deep CNN for learning the mapping from the bicubic 
to the residual between the bicubic and HR. The residual learning improves performance and 
accelerates convergence (see figure 7). 

 

 
Figure 5. Schematic of the Super-Resolution [4, Matlab18a] 

 

 
Figure 6. VDSR Network [4] 

 
Hyperparameters used and their attributes: 
The parameters used to train our final model are as follows. A network of depth 20 with 

batch size 64 is considered for training. The momentum and the weight decay parameters are 
set at 0.9 and 0.0001, respectively. Weights are initialized as [12] with rectified linear units 
(ReLU), which is a robust and effective module in the network. The network is trained with 
all images amidst 80 epochs (9960 iterations of 64 batch size). The learning rate is initially 
set at 0.1 following a decrease by a factor of 10 in every 20 epochs. In short, the learning rate 



decreased 3 times with learning stopped after 80 epochs and training time almost 4 hours on 
GPU Titan Z. 

 
Residual Learning Architecture: 
 

 
Figure 7. L-R: Traditional CNN framework, Residual Framework 

 
The traditional CNN framework and Residual framework are shown in figure 7. There is a 

shortcut in the residual framework between every two consecutive layers. This is called a skip 
connector. One such block is called the Residual network as in figure 7. Dimension mis-
match frequently occurs due to convolution operations in those two consecutive layers. This 
problem is alleviated by identity mapping for X and F(X). After resizing F(X), H(X) is gener-
ated with F(X) and X of the same size. F(X) is the predicted residual,  

𝐻(𝑋) = 𝐹(𝑋) + 𝑋 (10) 
Thus, F(X) and X are of the same size. Finally, residual Image is predicted as 

𝐹(𝑋) = 𝐻(𝑋) − 𝑋 (11) 
As r is considered as an actual residual image, so that 

𝑙𝑜𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =
1

2
‖𝑟 − 𝐹(𝑋)‖ 2 

(12) 

The loss function is as low as possible. Loss layers collect three inputs; residual estimate, 
network input (ILR image) and ground truth HR image. The loss is determined as the Euclid-
ean distance between the reconstructed image (the sum of network input and output) and the 
ground truth.  

3.2.3 Residual Enhancement (RE) 

This is the last module of SIVDSR techniques as in figure 4, and Table III. The difference 
between the SR image and the hazy image is added to the dehazed output for enhancement. 
In Residual Enhancement step V, the difference between the VDSR image from step III 
and the hazy image is amplified and added with the refined scene radiance from step IV. The 
result is shown in figure 8 below with scene 41, the O-Haze dataset. A comparative visual rep-
resentation is shown in figure 9, with the left to right images as Hazy, VDSR, Residual, 
Dehaze, and Residual Enhancement. 

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝐸𝑛ℎ𝑎𝑛𝑐𝑒𝑑 𝐼𝑚𝑎𝑔𝑒 = (𝐻𝑎𝑧𝑦 𝐼𝑚𝑎𝑔𝑒 − 𝑉𝐷𝑆𝑅 𝐼𝑚𝑎𝑔𝑒) ∗ 4 + 𝑅𝑎𝑑𝑖𝑒𝑛𝑐𝑒 𝐼𝑚𝑎𝑔𝑒 (13) 
 



 
Figure 8. Residual Enhancement 

 

 
Figure 9. Image L-R: Hazy, VDSR, Residual, Dehaze, Residual Enhancement 

 

3.3 Effect of lower bound 

The effect of the lower bound of transmission t0 (0.9, 0.5, 0.1) on the dehazed image is 
shown in figures 9, 10, and 11. In [18], the lower bound of transmission has been fixed at 0.1. 
In this proposed work, different values of transmission lower bound have been incorporated 
as in eq. (9) and investigated its effect in figures 10, 11, and 12; and tabulated in the corre-
sponding tables IV, V, and VI. Two types of dehazed images have been examined, super-
resolution dehazed image and enhanced super-resolution dehazed image. In all three cases of 
lower bounds, significant results have been found and listed in Tables IV, V, and VI. Parame-
ters (PSNR, SSIM, NIQE, BRISQUE) are used for evaluation and effective results are found at 
0.5, and 0.9 respectively.  

 



 
Figure 10. t0=0.9, L-R: Hazy Image, Super Resolution Image, Super Resolution  

enhanced Image 
 
Table IV: Performance with figure 10 

t0 =0.9, ω=0.6  Hazy Im-
age 

SR radiance 
image 

Enhanced SR radi-
ance image 

Full reference pa-
rameter [14, 13] 

PSNR - 53.0888 52.6401 

 SSIM - 0.9798 0.979 

No reference pa-
rameter [16, 15] 

NIQE 1.9013 2.5082 3.0171 

 BRISQUE 25.1514 17.449 34.8778 

 

 
Figure 11. t0=0.5 L-R: Hazy Image, Super Resolution Image, Super Resolution 

enhanced Image 
 
Table V: Performance of figure 11. 

t0 =0.5, ω=0.6  Hazy Im-
age 

SR radiance 
image 

Enhanced SR radi-
ance image 

Full reference param-
eter [14, 13] 

PSNR - 52.1919 52.0621 

 SSIM - 0.9717 0.9738 

No reference parame-
ter [16, 15] 

NIQE 1.9013 2.9567 5.927 

 BRISQUE 25.1514 19.2671 36.3221 



 

 
Figure 12. t0 =.1 L-R: Hazy Image, Super Resolution Image, Super Resolution  

enhanced Image 
 
Table VI: Performance of figure 12. 

t0 =0.1, ω=0.6  Hazy Im-
age 

SR radiance 
image 

Enhanced SR radiance 
image 

Full reference pa-
rameter [14, 13] 

PSNR - 52.1732 52.0057 

 SSIM - 0.9716 0.9735 

No reference pa-
rameter [16, 15] 

NIQE 1.9013 2.9615 6.1707 

 BRISQUE 25.1514 19.1983 35.5928 

 

3.4 Investigation of DM, TM with histogram and scatter plot 

In this section, the proposed SIVDSR-Dehaze net has been described in detail with a his-
togram and scatter plot. As shown in figures 13, 14, and 15, SIVDSR-Dehaze net performance 
has been evaluated considering the canon.jpg image [18] as a reference. Two techniques are 
used. The second technique is the enhancement version of the first one as described in sec-
tions 3.2.1 algorithm II, and III. In figure 13, histograms show a clear effect of haze and haze 
free images of the same scene. The histogram of hazy images reflects dense pixel orientation 
towards the centre of the graph; whereas histograms of the haze free images are well distrib-
uted and Gaussian in nature representing good contrast. Figure 14 illustrates the scatter plots 
of a) hazy image, b) SR image, c) EnhancedSR image, and d) GT. These scatter plots enumer-
ate the richness in colour and contrast of the proposed techniques in comparison with the ha-
zy ones. The hazy - dehazy image colour cloud plots and histogram are interesting and im-
portant in understanding the effectiveness of dehazing schemes. It has been illustrated in fig-
ures 13 and 14 by the histogram and colour cloud plotting of the 13_outdoor_hazy.jpg image 
under the O-Haze data set [17]. It is clearly evident that in hazy images pixel intensities are 
clustered densely around the upper central part of the intensity scale [0-255]; whereas, in the 
case of hazefree images, pixel intensities are loosely distributed in almost the entire intensity 
scale. DM, TM, and radiance images of the same canon.jpg image have been shown in figure 
15. It is evident that DMs are darker in the case of haze free images. Consequently, haze free 
TMs reflect more visibility. 

 



 
Figure 13. Histogram, L-R: Hazy image, Super resolution image, Enhanced Super  

resolution image, and GT. 
 

 
Figure 14. Colour cloud plot of L-R: Hazy image, super resolution image, Enhanced SR image, 

and GT. 
 

 
Figure 15. Row-1, L-R: Image: Haze, Super Resolution, Enhanced Super Resolution, GT 

Row-2, L-R: Depth Map: Haze, Super Resolution, Enhanced Super Resolution, GT 
Row-3, L-R: Transmission Map: Haze, Super Resolution, Enhanced Super Resolution, GT 

 

3.4.1 Difference between DM vs. Residual Map (RM) 

Hazy DM, residual DM, SIVDSR-Dehaze DM are shown in figure 16. Corresponding TMs 
and radiance images are shown in figures 17, and 18 respectively. In figure 18, effective para-
metric evaluation results are also shown. 

 



 
Figure 16. Depth map, L-R: Residual Depth Map, Raw depth map, Super  

resolution Depth Map 
 

3.4.2 Difference between TM vs. Residual TM (RTM) 

 
Figure 17. Transmission map of figure 16, 

L-R: Residual TM, Raw TM, Super resolution TM 
 

 
Figure 18. Scene Radiance of scene 13[17], Dehazed output, L-R: Residual Dehazed output, 

Raw Dehazed output, Super resolution Dehazed output, self-adjusting haziness factor= 
0.6423 [7-9], PSNR= 53.5857, 52.1978, 51.4765, SSIM= 0.9819, 0.9715, 0.9635. 

 

3.5 Effect of Adaptable Haziness Factor 
In sections 3.1.3 and 3.1.3.1, aerial perspective and adaptable haziness factor were dis-

cussed. Here, their effects are investigated. In figures 19 and 20, fixed haziness factors of 0.9 
and 0.65 are implemented with hazy, SIVDSR, Residual, SIVDSR-Dhaze, and SIVDSR-
DhazeRE images. Furthermore, parametric evaluation (PSNR, SSIM) shows improved results 
along with qualitative appearances. 

The appearance of the hazy image with respect to ground truth, super resolution dehaze, 
and enhanced super resolution dehaze images are shown in figure 19 along with the depth 
map and transmission map. The proposed results are visibly improved with increased con-
trast and higher resolution than GT. Moreover, halo, oversaturated, and gradient reversal ar-
tifacts are removed. 

 



 

 
Figure 19. Fixed haziness factor (0.9), L-R: hazy, SIVDSR, Residual, SIVDSR-Dehaze, 

SIVDSR-DhazeRE, GT 
Row-1: 43_outdoor_hazy.jpg: PSNR, 15.7524, 13.5508; SSIM, 0.9979, 0.9966 (SIVDSR-

Dehaze, SIVDSR-DhazeRE respectively); 
Row-245_outdoor_hazyPSNR, 12.8084, 12.1036; SSIM, 0.9799, 0.9843 (SIVDSR-Dehaze, 

SIVDSR-DhazeRE respectively). 
 

 

 
Figure 20. Adaptable haziness factor 0.65, L-R: hazy, SIVDSR, Residual, SIVDSR-Dehaze, 

SIVDSR-DhazeRE, GT 
Row-1: 43_outdoor_hazy.jpg, PSNR,16.9375, 14.2856; SSIM, 9987, 9965 (SIVDSR-Dehaze, 

SIVDSR-DhazeRE respectively); 
Row-2: 45_outdoor_hazyPSNR, 13.8708, 12.9066; SSIM, 0.9814, 0.9862 (SIVDSR-Dehaze, 

SIVDSR-DhazeRE respectively); 
 

3.6 More Theoretical Analysis with lower bound of transmission  

In this section, canon.jpg [18] with dense haze has been tested with our methods using 
different lower bound of transmission. In figure 21, at t0 0.1 SIVDSR-DhazeER produces 
oversaturated, halo, and gradient reversal artifacts. With the increase of t0, these artifacts are 
not prominent as in figures 22, and 23.  

 



 
Figure 21. at t0 =0 .1, L-R: Hazy Image, Oversaturated, gradient reversal, halo effect outputs 

with the proposed methods (SIVDSR-Dehaze, SIVDSR-DehazeRE) 
 

 
Figure 22. t0 = 0.5, L-R: Hazy Image, Oversaturated, gradient reversal, halo artifacts outputs 

with the proposed methods 
 

 
Figure 23. t0 = 0.9, L-R: Hazy Image, Oversaturated, gradient reversal, halo effect free out-

puts with the proposed methods 
 
The lower bound of transmission has been experimented with in figures 21, 22, and 23 as 

0.1, 0.5, and 0.9 respectively with SIVDSR-Dehazed and SIVDSR-DehazeRE outputs. The im-
age is canon.jpg of size 500x500 [18]. Figures 21, and 22 are showing oversaturated, gradient 
reversal and halo artifacts resulting at t0 0.1, and 0.5 respectively. In figure 20 with t0 as 0.9, 
clear outputs are shown. Thus, this can be established that the lower bound of transmission 
plays an important role in producing clear outputs. Finally, the fixed value of t0 may not pro-
duce the desired output. This leads to variable or adaptable lower bounds of the transmission 
map estimation. In figures 24, 25, and 26, a detailed study of DM, TM at t0 0.1. 0.5, 0.9 have 
been observed. 

 



 
Figure 24. Hazy Image, Oversaturated, gradient reversal, halo effect outputs with the pro-

posed method at t0=0.1, 
Row-1: Haze, SIVDSR-Dehaze, SIVDSR-DehazeRE; Row-2:DM of row-1; Row-3:TM of row-1. 

 

 
Figure 25. Hazy Image, Oversaturated, gradient reversal, halo effect outputs with the pro-

posed method at t0=0.5 
Row-1: Haze, SIVDSR-Dehaze, SIVDSR-DehazeRE; Row-2:DM of row-1; Row-3:TM of row-1. 

 



 
Figure 26. Hazy Image, Oversaturated, gradient reversal, halo effect free outputs with the 

proposed method at t0=0.9 
Row-1: Haze, SIVDSR-Dehaze, SIVDSR-DehazeRE; Row-2:DM of row-1; Row-3:TM of row-1. 

4. Experiment 
The proposed method is implemented on MATLAB R2018a on a PC with a 2.8 GHz Intel 

Core 2 Duo Processor. Our proposed model experimented with the O-Haze dataset [17], and 
[18] to conduct a comprehensive evaluation of the state-of-the-art single image dehazing 
techniques presented.  

Benchmark Used 
Benchmark Dataset is used [17-22]. 

4.1 Dehazing Evaluating Metric 
The details of the generator structures and parameter settings are shown in Table VII. 

 
Table VII. Parameter for performance evaluation 
Sl. No. Parameter Requirement Type 
1 Peak Signal to Noise Ratio (PSNR) 

[14] 
High value Full Reference 

2 Structure Similarity Index Metric 
(SSIM) [13] 

[0-1] in normalized scale 
high value 

Full Reference 

3 blind/reference less image spatial 
quality evaluator (BRISQUE) [15] 

Smaller value better per-
formance 

No reference 

4 
 

Naturalness Image Quality Eval-
uator (NIQE) [16] 

Smaller value better per-
formance 

No reference 
 

5 CIEDE2000[33, 37] Lower value for low colour 
distortion 

No reference 

 
 



Table VIII. Quantitative Evaluation of figure 27 (PSNR, SSIM) with image size 350x350x3 

Parameter Dehazed Image Improved Depth Map Improved TM 

PSNR 12.0783 12.4972 20.244 

SSIM 0.4374 0.4949 0.6474 

 
Table IX. Quantitative Evaluation of figure 27 (BRISQUE, NIQE) 

Parameter  Hazy 
Image 

Depth 
Map 

TM Improved 
Depth Map 

Improved 
TM 

Dehazed 
Image 

BRISQUE 18.8784 30.5624 12.9649 43.4582 43.4582 18.8747 

NIQUE 24.4850 18.8814 18.8793 18.8772 18.8768 43.4582 

 

 
Figure 27. Qualitative Evaluation of gugon.jpg [18], 

L-R: Top row- (a) degraded image, (b) residual image, (c) VDSR image, (d) clean image 
Bottom row- (e) Hazy DM, (f) TM, (g) recovered DM, (h) recovered TM. 

 
Figure 27 illustrates one scene (gugoon.jpg) [18] as input with our model and each step 

output has been extracted and compared qualitatively and quantitatively w.r.t hazy counter-
part as shown in tables IX, and X.  

4.2 Qualitative and Quantitative Evaluation 
In figure 28, one hazy image-GT pair [17] is tested with the state-of-the-art methods [17-

22, 29], and our methods. Its parametric evaluation is shown in Table X. Figure 29 is the 
crop/ zoom version of figure 28 for a detailed study. 

In order to show the efficiency of the proposed method, we compare results with related 
traditional methods. This approach performs      appreciably with a very dense haze. However, 
results are often over-saturated because the method does not utilize a physical model to re-
cover the image. The results of our method show clearer images with less colour saturation. 
The peak signal-to-noise ratio (PSNR) is most commonly used to measure the quality of re-
construction of hazy images. PSNR is most easily defined via the mean squared error. In our 
experiment, we use PSNR, SSIM, NIQE, BRISQUE, and Entropy work in [4]. Table XI shows 
comparable satisfactory results with the proposed methods. 

 



 
Figure 28. Subjective evaluation with O-Haze dataset [17]. (a) Hazy image, (b) Ground Truth, 

(c) SIVDSR-Dehaze, (d) SIVDSR-DehazeRE, (e) DCP [18], (f) Meng [19], (g) Fattal [20], h) 
Berman [21], (i) DehazeNet [29], (j) Ren [22], (k) Ancuti [17] 

 
Table X. Evaluation of Algorithm Performance w.r.t figure 28 (PSNR, SSIM, NIQE, 
BRISQUE, Entropy) along with ranks 

  PSNR SSIM NIQE BRISQUE Entropy 

GT 16.7986(2) 0.6818(5) 4.1515(9) 20.1243(10) 7.5171(6) 

SIVDSR_Dehaze 16.581(3) 0.6482(6) 4.71(10) 4.4171(3) 7.0958(2) 

Dehazed 13.3872(6) 0.6475(7) 3.6772(5) 10.4409(5) 7.7466(10) 

DCP 11.6003(10) 0.5949(9) 3.5251(2) 2.5369(1) 7.6295(9) 

Meng 11.9278(8) 0.7142(4) 3.532(3) 19.2958(9) 7.0896(1) 

Fattal 11.9241(9) 0.6217(8) 3.8544(8) 11.4575(7) 7.211(3) 

Berman 13.0319(7) 0.7232(3) 3.6336(4) 13.6197(8) 7.333(5) 

DehazeNet 14.9516(4) 0.8383(2) 3.6809(6) 10.5405(6) 7.5696(8) 

Ren 17.161(1) 0.9019(1) 3.4389(1) 3.6508(2) 7.2983(4) 

Ancuti 13.8383(5) 0.3273(10) 3.7013(7) 8.2222(4) 7.5529(7) 
 

 
Figure 29. Crop version of figure 27 [17] 

4.3 Comparative Analysis 
The O-Haze dataset [17] has been used for comprehensive performance evaluation on re-

cent single image dehazing. Few non-homogeneous scenes have been picked randomly from 
[17]. In figure 30, subjective results are: L-R: the hazy image, He et al. [18], Meng et al. [19], 
Fattal [20], Cai et al. [29], Ancuti et al. [17], Berman et al. [21] and Ren et al. [22], GT, 
SIVDSR, and SIVDSRRE. T-B: 11 scene from 45 scene of O-Haze dataset [17]. Table XI pre-
sents Quantitative evaluation of figure 30 and computes the SSIM and CIEDE2000 indicat-
ing between the ground truth images and the dehazed images produced by the evaluated 
techniques as mentioned above. Table XII Shows quantitative evaluation of all the 45 set of 
images of the O-HAZE dataset. This table presents the average values of the SSIM, PSNR and 
CIEDE2000 indexes, over the entire dataset. Finally, figure 31 elaborates Qualitative Com-
parative detail insets (cropped version) results as: L-R: the hazy image, He et al. [18], Meng et 
al. [19], Fattal [20], Cai et al. [29], Ancuti et al. [17], Berman et al. [21] and Ren et al. [22], 
GT, SIVDSR-Dehaze, and SIVDSR-DehazeRE. T-B: 3 scene scenes (10, 19, 41) from 45 scene 
of the O-Haze dataset [17]. 



 

 

 

 

 

 

 

 

 

 

 
Figure 30. Qualitative Comparative results: L-R: the hazy image, He et al. [18], Meng et 
al. [19], Fattal [20], Cai et al. [29], Ancuti et al. [17], Berman et al. [21] and Ren et al. [22], 

GT, SIVDSR-Dehaze, and SIVDSR-DehazeRE. T-B: 11 scene from 45 sceneof O-Haze dataset 
[17]. 

 
Table XI. Quantitative evaluation. We randomly picked up 11 sets from our O-HAZE da-
taset, and computed the SSIM and CIEDE2000 indices between the ground truth images 
and the dehazed images produced by the evaluated techniques. The hazy images, ground 
truth and the results are shown in figure 30. 

 

He et al. [18] Meng et al. Fattal Cai et al. Ancuti et al.. Berman et al. Ren et al. 
SIVDSR-
Dehaze(Our
s) 

SIVDSR-
DehazeRE 
(Ours) 

SSI
M 
[13] 

CIED
E 
2000 
[33,3
4] 

SSIM 
CIEDE 
2000 

SSIM 
CIEDE 
2000 

SSIM 
CIEDE 
2000 

SSIM 
 

CIEDE 
2000 

SSIM 
CIED
E 
2000 

SSI
M 

CIED
E 
2000 

SSI
M 

CIED
E 
2000 

SSIM 
CIEDE
2000 

Se
t 1 

0.82 22.37 0.77 21.06 0.73 24.29 0.58 24.42 0.75 20.09 0.76 20.97 0.81 18.17 
0.978
3 

13.07
19 

0.982
3 

16.963 

Se
t 6 

0.74 19 0.78 11.44 0.73 21.89 0.59 16.16 0.68 15.53 0.77 12.68 0.72 13.2 
0.98
07 

11.25
4 

0.981
2 

13.288
4 

Se
t 
10 

0.78 15.22 0.76 16.63 0.75 17.49 0.71 16.17 0.73 19.21 0.72 17.77 0.8 13.7 
0.989
7 

18.875
3 

0.989
8 

19.371 

Se
t 
19 

0.81 16.31 0.84 13.37 0.79 21.48 0.72 16.92 0.78 15.55 0.82 14.49 0.83 12.98 
0.982
8 

16.662
7 

0.983
4 

19.7795 

Se
t 
2

0.61 23.81 0.72 20.91 0.62 20.73 0.5 23.71 0.78 12.67 0.72 19.4 0.63 20.98 
0.988
6 

13.882
9 

0.985
7 

15.7584 



0 

Se
t 
21 

0.69 27.5 0.78 21.13 0.63 28.25 0.71 19.49 0.78 10.72 0.72 20.54 0.73 20.26 
0.981
2 

10.789
9 

0.986
9 

12.1366 

Se
t 
27 

0.61 21.38 0.68 18.76 0.67 22.37 0.64 17.16 0.77 10.94 0.7 18.41 0.71 14.16 
0.986
1 

9.498 
0.984
9 

11.9723 

Se
t 
3
0 

0.75 18.85 0.74 18.59 0.72 18.46 0.77 12.7 0.83 11.25 0.81 14.55 0.82 12.66 
0.982
9 

12.873
1 

0.983
1 

13.3614 

Se
t 
33 

0.76 18.54 0.74 15.84 0.76 17.86 0.81 14.61 0.61 20.86 0.66 19.39 0.88 10.87 
0.985
1 

15.102
1 

0.985
1 

15.560
5 

Se
t 
41 

0.77 19.54 0.72 21.45 0.66 23.71 0.84 12.78 0.84 13.02 0.82 14.36 0.88 12.34 
0.985
3 

11.110
1 

0.985 11.6285 

Se
t 
42 

0.79 19.7 0.82 11.03 0.73 13.21 0.58 15.58 0.74 15.37 0.82 11 0.72 12.87 
0.984
1 

12.126 
0.984
2 

13.1674 

 
Table XII. Quantitative evaluation of all the 45 set of images of the O-HAZE dataset. This ta-
ble presents the average values of the SSIM, PSNR and CIEDE2000 indexes, over the entire 
dataset.  
 He et al. Meng et 

al. 
Fattal  Cai et al. Ancuti et 

al. 
Berman 
et al. 

Ren et al. SRVDSR-
Dehaze 

SRVDSR-
DehazeRE 

SSIM 0.735(7) 0.753(4) 0.707(8) 0.666(9) 0.7470(6
) 

0.750(5) 0.765(3) 0.9840(2) 0.9846(1
) 

PSNR 16.586(5
) 

17.443(2
) 

15.639(7
) 

16.207(6
) 

16.855(3
) 

16.610(4
) 

19.068(1
) 

15.23(8) 14.13(9) 

CIEDE200
0 

20.745(9
) 

16.968(5
) 

19.854(8
) 

17.348(7
) 

16.431(4) 17.088(6
) 

14.670(2) 13.204(1
) 

14.817(3) 

Total Rank-
ing 

21 11 23 22 13 15 6 11 13 

Ranking 5 2 7 6 3 4 1 2 3 

 

 

 

 
Figure 31. Qualitative Comparative detail insets (cropped version) results: L-R: the 

hazy image, He et al. [18], Meng et al. [19], Fattal [20], Cai et al. [29], Ancuti et al. [17], 
Berman et al. [21] and Ren et al. [22], GT, SIVDSR-Dehaze, and SIVDSR-DehazeRE. T-B: 3 

scene scenes (10, 19, 41) from 45 scene of the O-Haze dataset [17]. 
 

4.4 Computational Complexity Applications: 

The proposed algorithm is divided into two parts: i) Atmospheric scattering model [2, 3, 
10, 11], ii) VDSR NETWORK [4-5] as in figure 2. The low complexity atmospheric scattering 
model has computational complexity O(n2) [6-9, 30]. The VDSR model is faster than other 
SRCNN methods [4-5]. Thus, it can be concluded that the proposed model works faster in the 
VDSR framework in comparison with other SRCNN frameworks. 

Applications: 
a) Image visibility improvement and Edge-preserving smoothing: Here edge-

preserving smoothing filters can preserve the key features of an image like an edge and de-
noise the image. Flash/No-Flash Denoising: It can denoise a no-flash image under the guid-
ance of its flash version.  



b) Matting/Guided Feathering: Extracting foreground objects from an image means 
separating the foreground from the background. It is used in video editing and image pro-
cessing.  

c) Haze Removal: Hazy images are formed due to light scattering with particles in the 
atmosphere. Haze removal filters will improve the image.  

d) Joint Upsampling: Under the guidance of another image, upsampling is done. One 
application of joint upsampling is the colourization of images. 

e) Underwater visibility improvement 

4.5 Evaluation and Discussion 

A novel image dehazing technique has been presented with a comparative evaluation with 
the seven state-of-the-art contemporary techniques. In Section 4.3 scenes from the O-HAZE 
dataset [17] are used in the experiments picked randomly. In figure 4, eleven columns are 
there; the first column shows hazy images from [17], the second to eight columns are [18,-22, 
29, 33], column nine shows ground truth, and columns ten and eleven are the proposed super 
resolution based dehazing results and followed by enhanced super resolution based dehazing. 
Furthermore, in figure 31, the comparative cropped detail of scenes 10, 19 and 41, respectively 
have been examined. In subjective observation, the work of He et al. [18] attains 73.5% of 
structure information SSIM [13] with low airlight estimation leading to colour shifting. Addi-
tionally, low contrast and gloomy images are found. Halo artifacts and gradient reversal ef-
fects are prominent. Thus, DCP fails in the O-Haze dataset. In [19], Meng et al. proposed a 
method based on DCP producing results better than [18] in low noise (PSNR), a low colour 
difference (CIEDE2000) [33, 34] with good transmission estimation. Undesirable shifting of 
colour is also prominent in Fattal [20], and in Berman et al. [21], the effect is lessened with 
sharp edges with the local estimation of airlight and transmission. In Ancuti et al. [17], the 
resulting images are of good contrast due to efficient multi-scale fusion and local airlight es-
timation. Ren et al. [22] (column 8 of figure3) and Cai et al. [29] (column 5 of figure 3) de-
pend on learning based techniques. Whereas, in [22] good results are obtained compared to 
[29]. Finally, the proposed approaches (SR Dehaze, tenth column; and Enhanced SR Dehaze, 
eleventh column) present clear visible output in both foreground and background. Thus, sub-
jective analysis has been carried out with the seven state-of-the-art techniques [17-22, 29]. 
They belong to prior based techniques [18-20, 22, 17], and learning based techniques [21, 29]. 
Most of them, on average, produce meaningful results with halo artifacts, gradient reversals, 
and colour shifting. Unpleasant, synthetic appearances are inevitable. It should be noted that, 
with the O-Haze dataset [17] ground truths (GT) are also available, this gives the comparative 
study a robust validation. But proposed techniques present far better output in comparison to 
all others. The effectiveness of the proposed techniques is measured with the O-Haze dataset 
as the objective evaluation with other dehazing techniques. In Table XI, a comparative analy-
sis with the different dehazing techniques prior based [18-21, 29, 27] and learned based tech-
niques [21, 22] with respect to GT and the proposed techniques have been discussed against 
parameter SSIM, CIEDE2000 [13, 33, 34] as in figure 30. Local patterns of pixel intensities of 
two images of the same scene are compared in the structural similarity index (SSIM) normal-
izing luminance and contrast in the range [0-1]; 1 for an absolute similar image, zero indi-
cates no match at all. maximum value 1 for two identical images. CIEDE2000 is a parameter 
for colour distortion measurement in the range [0-100]; a smaller value for better preserva-
tion of colour, and a higher value for high colour distortion.  

The O-Haze dataset has 45 scenes, and an average of SSIM, PSNR, CIEDE2000 of the en-
tire dataset scenes has been entered in table XII experimenting with those seven techniques 
[17-22, 29] and two proposed techniques. Table XII shows our methods outperform other 
methods in SSIM, and in CIEDE2000. In the case of PSNR, Ren et al [22] give the best per-
formance. The bottom row of Table IX shows that Meng et al [19] outperform other methods 
(a total of eleven methods) in parametric evaluation (SSIM, PSNR, CIEDE2000). The second 
and third positions are obtained by the proposed methods. Meng et al [19] obtained 2nd posi-



tion jointly and Ancuti et al [17] secured 3rd position jointly. The following positions are [18, 
20, 21, 29]. In nutshell, none of the methods executes better than the others with all 45 imag-
es in the O-Haze dataset. The highest value of SSIM and the lowest value for CIEDE2000 are 
recorded with the proposed methods. To summarise, the above analysis shows the complexity 
of the single-image based dehazing problem. Moreover, this also has been established that 
the proposed methods produce convincing results qualitatively and quantitatively. Finally, 
cropped version scenes of 10, 19, 41 show comparable results, even better. 

5. Conclusion 
In this article, a single image super resolution based image visibility improvement meth-

od has been proposed, which is designed for improving the visibility of digital images cap-
tured in turbid atmospheres. Researchers are working to reduce poor visibility and SIVIAs 
are most prominent but also have challenges of low computational complexity, accurate 
depth map, and preserving the image quality and structure. The image formation scattering 
linear model [10] is inverted with a significant change incorporating in-depth map estimation 
leading to better transmission followed by a clear image. This new method has been com-
pared qualitatively and quantitatively against eight state-of-the-art techniques; VDSR is em-
ployed to preserve important structures of the image in depth map estimation. VDSR is a very 
deep network based on super-resolution. In VDSR, residual learning with extremely high 
learning rates is adapted to reduce the slow convergence rate with maximizing convergence 
speed, gradient clipping is used to nail down training stability. VDSR is applicable in image 
super-resolution, reconstruction, denoising, and compression artifact removal. Due to these 
properties of VDSR, the depth map is denoised effectively for reducing poor visibility. En-
hanced SR Dehazing is a by-product of the above mentioned algorithm. Thus, as a whole two 
algorithms have been proposed. PSNR, SSIM, BRISQUE, NIQE, and CIEDE2000 are some 
important parameters to evaluate image quality in VIAs. It is clear from the acquired results 
that the proposed algorithms are superior in reducing the effect of poor visibility. Future 
Direction -In the future, as shown in table XII there is scope to improve parameter PSNR 
values so that the ranking of the proposed algorithms will be increased.  
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Table XIV. Abbreviation used 
VIA SIVDSR SIVDSR-

Dehaze 
SIVDSR-
DehazeRE 

TM CNN GT 

Visibility 
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ment Algo-
rithms 
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Super 
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Visibility 
Super 
Resolu-
tion 
Dehaze 

SIVDSR-
Dehaze Re-
sidual En-
hancement 

Transmis-
sion Map 

Convolu-
tion Neural 
Network 

Groun
d 
Truth 

 
 
 



Table XV. Dataset Used Details 
Dataset O-Haze[17] Single Image Haze Removal 

Using Dark Channel Prior. [18] 

Statement It is a collection of 40 outdoor hazy-ground 
truth images 

Canon.jpg has been taken from 
[18]. 
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